2/EH-29 (ii) (Syllabus-2015)

Terramile art to 2016 at ball to

April) April)

confugate to the diameter v = 2x.

MATHEMATICS

(Elective/Honours)

SECOND PAPER

(Geometry and Vector Calculus)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, choosing one from each unit

(c) Find the verlex TINU the length of the

1. (a) Show that the equation

$$4x^2 + 12xy + 9y^2 + 8x + 12y = 0$$

represents a pair of parallel lines and find the distance between them.

(b) If the straight lines represented by the equation

 $x^{2}(\tan^{2}\phi + \cos^{2}\phi) - 2xy \tan \phi + y^{2} \sin^{2}\phi = 0$

make angles α and β with the axis of x, then show that $\tan \alpha - \tan \beta = 2$.

(Turn Over)

5

5

D16/1451

- (c) (i) Find the equation of the diameter of the conic $4x^2 + 6xy 5y^2 = 1$ conjugate to the diameter y = 2x.
 - (ii) Find the asymptotes of the hyperbola xy+4x+3y+5=0. 3+2=5
- 2. (a) Find the equation of the tangent to the conic $4x^2 + 3xy + 2y^2 3x + 5y + 7 = 0$ at the point (1, -2).
 - (b) If by transformation from one set of rectangular axes to another with the same origin the expression ax + by changes to a'x' + b'y', then prove that

tion does not see
$$a^2 + b^2 = a'^2 + b'^2$$

(c) Find the vertex and the length of the latus rectum of the parabola

$$0 = y \le (3x + 4y - 17)^2 = 35(4x - 3y - 6)$$

and the distance between them. II—TINU

represents a pair of parallel lines and

3. (a) Show that the tangent to an ellipse at either extremity of a diameter is parallel to the system of chords bisected by the diameter.

(Continued)

5

(b) Prove that if the straight line $\lambda x + \mu y + \nu = 0$ touches the parabola $y^2 - 4px + 4pq = 0$, then

$$\lambda^2 q + \lambda v - p\mu^2 = 0$$

- (c) Find the locus of the point whose distance from the origin is equal to its perpendicular distance from the plane 2x+3y-6z=9.
- 4. (a) Find the equation of the plane passing through the middle point of the join of the points (2, -3, 1) and (4, 5, -3), and is perpendicular to the line joining the points.
 - (b) If p and p' are the lengths of the two segments of any focal chord of the parabola $y^2 = 4x$, then show that p + p' = pp'.
 - (c) Show that the normal to the rectangular hyperbola $xy = c^2$ at the point t meets the curve again at the point t' such that $t^3t' = -1$.

(Turn Over)

5

5

5

D16/1451

D16/1451

UNIT—III

(a) Prove that the lines

$$\frac{x-2}{4} = \frac{y+1}{3} = \frac{z-3}{5}$$

and

$$x+2y+3z-9=0=2x-y+2z-11$$

are coplanar.

5

(b) Find the equation of the cylinder whose generators are parallel to the line

$$\frac{x}{2} = \frac{y}{5} = \frac{z}{3}$$

and which passes through the origin z = 0, $3x^2 + 4y^2 = 12$.

(c) (i) Find the centre and radius of the sphere given by $x^2 + y^2 + z^2 + 3x - 4y + 5z + 5 = 0$

(ii) Find the equation of the tangent plane to the sphere

$$x^2 + u^2 + z^2 = 14$$

at the point (1, -2, 3).

2+3=5

6. (a) Find the SD between the y-axis and the line

$$\frac{x-1}{5} = \frac{y-7}{-4} = \frac{z+3}{12}$$

5

16**/1451** (Continued)

(b) Obtain the equation of the sphere having circle

$$x^2 + y^2 + z^2 + 10y - 4z - 8 = 0$$
,

thus bos was soon a tach x+y+z=3

as the great circle.

5

5

5

5

(c) Find the equation of the cone whose vertex is the point (1, 1, 0) and whose guiding curve is y = 0, $x^2 + z^2 = 4$.

UNIT-IV

7. (a) Interpret $\vec{a} \times \vec{b}$ geometrically, where \vec{a} and \vec{b} are non-zero vectors.

(b) The position vectors of three points A, B and C are A(1, 1, -2), B(0, -2, 2) and C(1, 4, -6). Find the length of the perpendicular from B to AC.

(c) If $\vec{r} = 5\hat{t}^2\hat{i} + \hat{t}\hat{j} - \hat{t}^3\hat{k}$ and $\hat{s} = \sin \hat{t}\hat{i} - \cos \hat{t}\hat{j}$, then find $\frac{d}{dt}(\vec{r} \cdot \vec{s})$.

8. (a) Show that

w that
$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a} \ \vec{b} \ \vec{d}] \vec{c} - [\vec{a} \ \vec{b} \ \vec{c}] \vec{d}$$

D16/1451

(Turn Over)

- (b) Show that the points $4\hat{i} + 5\hat{j} + \hat{k}$, $-\hat{j} \hat{k}$, $3\hat{i} + 4\hat{j} + 4\hat{k}$ and $4(\hat{i} + \hat{j} + \hat{k})$ are coplanar.
- (c) Show that a necessary and sufficient condition that a proper vector \vec{u} always remains parallel to a fixed line is that

seedly area at
$$\overrightarrow{u} \times \frac{d\overrightarrow{u}}{dt} = \overrightarrow{0}$$
 and the first seedly beauty at $\overrightarrow{u} \times \frac{d\overrightarrow{u}}{dt} = \overrightarrow{0}$

5

5

Unit—V

9. (a) If $r = |\overrightarrow{r}|$, then show that

$$\vec{\nabla} f(r) = \frac{f'(r)}{r} \vec{r}$$
 5

- (b) Find the velocity and acceleration of a particle which moves along the curve $x = 2 \sin 3t$, $y = 2 \cos 3t$ and z = 8t at any time t.
 - (c) Find the directional derivative of f = xy + yz + zx in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$ at the point (1, 2, 0).
- 10. (a) Show that $\vec{\nabla} \times \vec{\rho} = \vec{0}$, where $\vec{\rho} = m \frac{\vec{r}}{r^3}$, m is constant.

D16/1451

(Continued)

(b) Show that $\nabla^2 \left(\frac{1}{r}\right) = 0$, where $r = |\vec{r}|$ and $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.

5

5

(c) Find the equations of tangent plane to the surface $x^2 + y^2 - z = 0$ at the point (2, -1, 5).

* * *

D16-1700/1451

2/EH-29 (ii) (Syllabus-2015)

2/H-76 (v) (a) (Syllabus-2015)

2017

(April)

COMMERCE

(Honours)

(Fundamental Mathematics)

(BC-202)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any five questions

- 1. (a) Express $A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$ as the sum of a symmetric matrix and a skew-symmetric matrix.
 - (b) Compute the inverse of

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$

5

5

5

(c) Solve the following equations by Cramer's rule:

$$4x-y-z=1$$

$$x+y-2z=1$$

$$3x+2y+z=8$$

D72/1387

(Turn Over)

- 2. (a) Find the domain and the range of the following functions:
 - (i) $\frac{1}{\sqrt{x-3}}$

 - (b) A vegetable seller charges ₹25 per papaya for purchase of 6 or less papayas and charges ₹20 per papaya if the purchase is more than 6 or less than 11 papayas. If the purchase is more than 11 or equal to 11, he charges ₹10 per papaya. Find the cost function C(x) where C(x) represents cost of buying x papayas.
 - (c) If f(x) = ax + b such that f(-1) = 5and f(1) = 6, find f(x). Also find the value of f(10).
- 3+4 Evaluate the following limits: 3. (a)
 - (i) $\lim_{x\to 1} \frac{x^2-3x+2}{x^2-4x+3}$
 - (ii) $\lim_{x \to 0} \frac{\sqrt{1+2x} \sqrt{1-3x}}{x}$

D72/1387

(Continued)

(b) A function
$$f(x)$$
 is defined by
$$f(x) = \begin{cases} -x, & \text{when } x \le 0 \\ x, & \text{when } 0 < x < 1 \\ 2 - x, & \text{when } x \ge 1 \end{cases}$$

Show that f(x) is continuous at x = 0and x = 1.

Draw the graph of the following function:

$$f(x) = \begin{cases} -3x & \text{when } x < 0 \\ x & \text{when } 0 \le x \le 2 \\ 2 & \text{when } 2 < x \le 4 \end{cases}$$

Find the first-order derivative of the 4. (a) following functions (any two):

(i)
$$f(x) = \frac{e^x \log_e x}{x^2}$$
(ii)
$$f(x) = x^x$$

(ii)
$$f(x) = x^x$$

(iii)
$$f(x) = \sqrt{2 + \sqrt{2 + x}}$$

- Find the elasticities of demand and supply at equilibrium price for the demand function $p = 16 - x^2$ and supply function $p = 2x^2 + 4$, where p is price per unit output and x is the output.
- 5. (a) A firm has total revenue function $R(x) = 100 x - x^2$ and total cost function $C(x) = x^3 - \frac{57}{2}x^2$, where x is the level of

output. Determine the maximum profit.

D72/1387

(Turn Over)

- (b) A central agency needs to determine the rent to charge for each of the 200 apartments in order to attain maximum income. Experience shows that if the rent is set at ₹ 150 a week, all units are occupied but for each ₹5 per week increase in rent, 5 units become vacant. What rent should be fixed to maximize revenue? Determine also the maximum revenue.
- The side of an equilateral triangle is 5 cm and is increasing at the rate of $\sqrt{3}$ cm/sec. How fast is— (i) the area increasing; (ii) the perimeter increasing?

(Given $A = \frac{\sqrt{3}}{4}a^2$, where a = side and A = area)

A company expects cash inflows from its investment proposal, it has undertaken in time period zero, ₹2,00,000 in the first year and ₹1,50,000 in the second year and expects ₹ 1,00,000 for the next eight years. What would be the present value of cash inflows, assuming a 20% rate of interest?

(b) If your expected rate of return on investment is 12% per annum and you find a 10% debenture in the market at ₹850, would you buy the debenture? Given that the maturity period of the debenture left is 4 years and the maturity value is ₹1,000.

A bond is available for ₹1,500 it offers, including one immediate payment and 10 annual payments of ₹200. Find the rate of return on the bond.

The annual increase of population of a village is 3% approximately. The population of the city was 30 lakhs at the end of 2015. What will be the population at the end of 2030?

(c) A machine costs ₹5,00,000 with a working life of 5 years and a scrap value of ₹ 1,00,000 at the end. Calculate the yearly depreciation as per written down value method and straightline method if the rate of depreciation is 10%.

D72-3400/1387

6

2/H-76 (v) (a) (Syllabus-2015)

7

(Continued)

D72/1387

2/EH-29 (ii) (Syllabus-2015)

2017

(April)

MATHEMATICS

(Elective / Honours)

(Geometry and Vector Calculus)

(GHS-21)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, choosing one from each Unit

UNIT-I

- 1. (a) If the two pairs of lines $x^2 2pxy y^2 = 0$ and $x^2 2qxy y^2 = 0$ be such that each pair bisects the angles between the other pair, prove that pq+1=0.
 - (b) Find the angle through which a set of rectangular axes must be turned without the change of origin so that the expression $7x^2 + 4xy + 3y^2$ will be

transformed into the form $a'x^2 + b'y^2$.

(Turn Over)

- (c) Find the diameter of the conic $15x^2 20xy + 16y^2 = 1$ conjugate to the diameter y + 2x = 0.
- 2. (a) Find the lengths of the semiaxes of the conic $ax^2 + 2hxy + ay^2 = d$.
 - (b) Find the centre of the conic given by the equation

$$3x^2 - 8xy + 7y^2 - 4x + 2y - 7 = 0$$

5

6

5

(Continued)

(c) Find the equation of the polar of the point (2, 3) with respect to the conic

$$x^2 + 3xy + 4y^2 - 5x + 3 = 0$$

UNIT-II

- 3. (a) Prove that the locus of the point of intersection of the normals to the parabola $y^2 = 4ax$ at the extremities of a focal chord is the parabola $y^2 = a(x-3a)$.
 - (b) Prove that the sum of the reciprocals of two perpendicular focal chords of a conic is constant.

(c) Prove that the locus of the middle point of the portion of a tangent to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

intercepted between the axes is given by

$$\frac{a^2}{x^2} + \frac{b^2}{u^2} = 4$$

 (a) If e₁ and e₂ be the eccentricities of a hyperbola and its conjugate, show that

$$\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1$$

- (b) Prove that two tangents can be drawn from a given point of an ellipse.
- (c) If the tangent $y = mx + \sqrt{a^2m^2 b^2}$ touches the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

at the point ($a \sec \theta$, $b \tan \theta$), prove that

$$\sin \theta = \frac{b}{am}$$

UNIT-III

5. (a) Find the equation of the plane passing through the point (1, -2, 1) and the line of intersection of the planes

$$2x-y+3z-2=0$$
 and $x+2y-4z+3=0$

D72/1358

(Turn Over)

5

(5)

(b) Prove that the lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and

$$4x-3y+1=0=5x-3z+2$$

are coplanar.

5

(c) Prove that the shortest distance between the lines

between the lines
$$\frac{x-5}{3} = \frac{y-7}{-16} = \frac{z-3}{7} \text{ and}$$

$$\frac{x-9}{3} = \frac{y-13}{8} = \frac{z-15}{-5}$$

is 14.

- 6. (a) Find the equation of the sphere which touches the sphere $x^2 + y^2 + z^2 = 21$ at the point (1, -2, 4) and passes through the point (3, 4, 0).
 - (b) Find the equation of the cone whose vertex is (2, 2, 2) and the base is z = 0, $x^2 + y^2 = 36$.
 - (c) Find the equation of a right circular cylinder whose axis is

$$\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{2}$$

and its radius is 5.

5

5

5

(Continued)

UNIT-IV

7. (a) If \hat{a} , \hat{b} , \hat{c} be three unit vectors such that

$$\hat{a} \times (\hat{b} \times \hat{c}) = \frac{1}{2}\hat{b}$$

find the angles which \hat{a} makes with \hat{b} and \hat{c} , given that \hat{b} and \hat{c} being non-parallel.

(b) Prove that

$$(\overrightarrow{b} \times \overrightarrow{c}) \cdot (\overrightarrow{a} \times \overrightarrow{d}) + (\overrightarrow{c} \times \overrightarrow{a}) \cdot (\overrightarrow{b} \times \overrightarrow{d}) + (\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{c} \times \overrightarrow{d}) = 0$$

(c) Prove the Lagrange's identity

$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \begin{vmatrix} \vec{a} \cdot \vec{c} & \vec{a} \cdot \vec{d} \\ \vec{b} \cdot \vec{c} & \vec{b} \cdot \vec{d} \end{vmatrix}$$

8. (a) Show that a necessary and sufficient condition for $\vec{u}(t)$ to be constant is

$$\frac{d\vec{u}}{dt} = 0$$
 3

(b) If \hat{r} is a unit vector, show that

$$\left| \hat{r} \times \frac{d\hat{r}}{dt} \right| = \left| \frac{d\hat{r}}{dt} \right|$$

(Turn Over)

5

5

D72/1358

D72/1358

- (c) If $\vec{r} = \vec{a} \cos \omega t + \vec{b} \sin \omega t$, show that

 (i) $\hat{r} \times \frac{d\vec{r}}{dt} = \omega \vec{a} \times \vec{b}$
 - (ii) $\frac{d^2\vec{r}}{dt^2} = -\omega^2\vec{r}$

where \vec{a} and \vec{b} are constant vectors. 2+:

(d) A particle moves along the curve $x = 4\cos t$, $y = 4\sin t$, z = 6t. Find the velocity and acceleration at time t = 0 and $t = \frac{\pi}{2}$.

UNIT-V

9. (a) Find the directional derivative of the function

$$f(x) = x^2 - y^2 + 2z^2$$

at the point P(1, 2, 3) in the direction of the line PQ, where Q has coordinates (5, 0, 4).

(b) Show that grad $f(r) \times \overrightarrow{r} = 0$, where

$$r = |\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$

- (c) Determine the constants a, b, c so that the vector
- $\vec{f} = (x+2y+az)\hat{i} + (bx-3y-z)\hat{j} + (4x+cy+2z)\hat{k}$ is irrotational.

D72/1358

(Continued)

- 10. (a) Find a unit normal to the surface $\phi = 2x^2y + 3yz 4$ at the point (1, -1, -2).
 - (b) If $r = |\vec{r}|$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, prove that $\nabla \log |\vec{r}| = \frac{1}{r^2}\vec{r}$.
 - (c) Find the divergence and curl of the vector

$$\vec{f} = (x^2 - y^2)\hat{i} + 2xy\hat{j} + (y^2 - xy)\hat{k}$$
 5

5

* * 1

D72-2000/1358

2/EH-29 (ii) (Syllabus-2015)

2/EH-29 (ii) (Syllabus-2015)

2018

buil same ingrate to large

MATHEMATICS

(Elective/Honours)

(Geometry and Vector Calculus)

(GHS-21)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer **five** questions, choosing **one** from each Unit

UNIT—I

1. (a) If by rotation of the rectangular axes the equation $17x^2 + 18xy - 7y^2 = 1$ reduces to the form $ax^2 + by^2 = 1$, find the angle through which the axes are rotated. Also find the values of a and b.

- (b) Prove that the equation $2x^2 + xy 6y^2 6x + 23y 20 = 0$ represents a pair of straight lines. Find the coordinates of their point of intersection.
- (c) Reduce the equation $17x^2 + 12xy + 8y^2 46x 28y + 17 = 0$ to the standard form.
- 2. (a) Prove that the equation of the tangent to the conic $ax^2 + 2hxy + by^2 + 2gx + 2fy = 0$ at the origin is gx + fy = 0.
 - (b) Find the diameter of the conic $15x^2 20xy + 16y^2 = 1$ conjugate to the diameter y + 2x = 0.
 - $4x^{2} + 3xy + 5x + 21 = 0$ and $x^{2} 4xy 3x + 19 = 0$ have a common asymptote. Also find the other asymptotes.

Prove that the two hyperbolas

UNIT-II

- 3. (a) Show that the locus of the point of intersection of any two perpendicular tangents to the parabola $y^2 = 4ax$ is the directrix.
 - (b) Find the asymptotes of the hyperbola xy + ax + by = 0

5

5

5

5

- (c) A tangent to the parabola $y^2 = 8x$ makes an angle of 45° with the straight line y = 3x + 5. Find the equation of the tangent and its point of contact.
- **4.** (a) Show that the normal to the rectangular hyperbola $xy = c^2$ at the point t meets the curve again at the point t' such that $t^3t' = -1$.
 - (b) Prove that the straight line $\frac{ax}{3} + \frac{by}{4} = c$ will be a normal to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

if $5c = a^2e^2$.

(c) Prove that two tangents can be drawn from a given point to an ellipse.

8D/1713 (Turn Over)

(Continued)

5

Find the equation of the right circular

cone, whose vertex is (3, 2, 1), axis is the

UNIT-III

- 5. (a) Show that the equation of the plane which passes through the point (2, -3, 8) and is normal to the line joining the points (3, 4, -1) and (2, -1, 5) is x+5y-6z+61=0.
 - (b) Find the equation to the locus of the point whose distance from the origin is equal to its perpendicular distance from the plane 2x+3y-6z=9.
 - (c) Find the shortest distance between the lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$

and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$

Also show that the lines are coplanar. 5

6. (a) Prove that the plane

$$2x - 2y + z + 12 = 0$$

touches the sphere

$$x^2 + y^2 + z^2 - 2x - 4y + 2z = 3$$

4 1 3 and semi-vertical angle is 30°.

(c) Find the equation of the cylinder generated by the lines parallel to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{5}$, the guiding curve being the conic x = 0, $y^2 = 8z$.

UNIT-IV

- 7. (a) If \vec{a} , \vec{b} , \vec{c} are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{b} \times \vec{c} = \vec{a}$, show that the vectors \vec{a} , \vec{b} , \vec{c} are orthogonal in pairs and $|\vec{b}| = 1$, $|\vec{c}| = |\vec{a}|$.
 - (b) Show that the four points \vec{a} , \vec{b} , \vec{c} , \vec{d} are coplanar if

$$[\overrightarrow{b} \ \overrightarrow{c} \ \overrightarrow{d}] + [\overrightarrow{c} \ \overrightarrow{a} \ \overrightarrow{d}] + [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{d}] = [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]$$
 5

(c) Show that the volume of the parallelopiped whose edges are represented by (3i+2j-4k), (3i+j+3k) and (i-2j+k) is 49 cubic units.

8D/1713

(Turn Over)

5

5

5

5

- **8.** (a) Show that a necessary and sufficient condition for a vector $\vec{u}(t)$ to have a constant direction is $\vec{u} \times \frac{d\vec{u}}{dt} = 0$.
 - (b) Find the unit tangent vector at any point on the curve $x = a\cos t$, $y = a\sin t$, z = bt.
 - (c) If $\vec{r} = 3t\hat{i} + 3t^2\hat{j} + 2t^3\hat{k}$, then find

$$\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}$$

UNIT-V

9. (a) Find the directional derivative of

$$\phi = (x^2 + y^2 + z^2)^{-1/2}$$

at the point P(3, 1, 2) in the direction of the vector $yz\hat{i} + zx\hat{j} + xy\hat{k}$.

(b) Show that

grad
$$e^{(x^2+y^2+z^2)} = 2e^{r^2}$$

where
$$r = |\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$
.

(c) If

If
$$\vec{A} = (x + y + 1)\hat{i} + \hat{j} + (-x - y)\hat{k}$$

prove that $\overrightarrow{A} \cdot (\nabla \times \overrightarrow{A}) = 0$.

(Continued)

10. (a) Prove that

$$\operatorname{div} \hat{r} = \frac{2}{r}$$

where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and

$$r = |\overrightarrow{r}| = \sqrt{x^2 + y^2 + z^2}$$

5

6

4

(b) Find the equations of the tangent plane and normal line to the surface

$$f = 2xz^2 - 3xy - 4x - 7$$

at the point (1, -1, 2).

(c) Find the gradient and unit vector normal to the surface $f = x^2 + y - z$ at the point (1, 0, 0).

8D-2200/1713

2/EH-29 (ii) (Syllabus-2015)